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Multiple Reversals of Competitive Dominance in
Ecological Reserves via External Habitat Degradation*
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In this article we continue an examination of the consequences of habitat
degradation on species interactions begun by Cantrell, Cosner and Fagan in
Cantrell et al., J Math. Biol. 37, 491-533 (1998). In Cantrell et al., J Math.
Biol. 37, 491-533 (1998), two competing species were thought to inhabit a
pristine patch of habitat surrounded by “matrix” habitat whose level of deg-
radation is variable. The dynamics of the species interactions was modeled
by diffusive Lotka~Volterra competition equations in the patch supplemented
by Robin boundary conditions on the interface between the pristine patch
and the matrix habitat. Habitat degradation was incorporated into the model
via a tunable hostility parameter in the boundary conditions. Analysis of the
model showed that it is possible for a species to be competitively dominant
in the pristine patch when the surrounding environs are only mildly unfa-
vorable but to lose this advantage and be competitively inferior in the patch
when matrix hostility is severe. In this article we address the question of
just how delicately competitive advantage within the pristine patch depends
on the level of degradation in the environs surrounding the pristine patch.
We show that it is indeed possible for competitive advantage to reverse more
than once as the level of degradation in the matrix habitat increases and also
examine the effects thereof on the number and nature of equilibria through
a detailed bifurcation analysis.

KEY WORDS: Reaction-diffusion; Lotka-Volterra; competition; bifurcation;
population dynamics; competitive advantage.

1. INTRODUCTION

Predicting the consequences of habitat fragmentation and other spa-
tial processes for ecological systems requires an understanding of the
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mechanisms through which those processes act locally. Habitat edges are
natural byproducts of the process of fragmentation which serve to mod-
ify species interactions and hence ultimately, community composition and
structure. Recently, Cantrell, Cosner and Fagan have been studying differ-
ent avenues through which habitat edges change species interactions. In [6],
they identified four principal ways by which edges may effect species inter-
actions:

1. by alteration of species’ moving patterns,

2. by differential induction of species’ mortality,

3. through cross-boundary subsidies,

4. by the creation of novel opportunities for species interactions.

In further work [3-5,7], they employed reaction-diffusion models moti-
vated by empirical examples to illustrate and explore these categories of
edge-mediated effects.

As an example, in [4], Cantrell, Cosner and Fagan demonstrated how
degrading the quality of the “matrix” habitat surrounding a habitat patch
could reverse the nature of competitive two-species dynamics inside the
patch so that a normally “inferior” species out competes a “superior”
one. The model employed in [4] was a diffusive Lotka~Volterra model for
two-species competition in a bounded habitat. It may be expressed as

dup
=L = D1 Auy +uifay —ug —brua], (1.1)

ot
ouy .
W:DzAuz—}—uz[az—bgul—uz] in € x (0, c0),
B ) B
] Auj-n-+ u;=0 on 082 x (0, c0), 1.2
( w+B in @+ B i ( ) (1.2)

i=1,2. Here u; represents the population density of species / and Q rep-
resents the habitat patch in question, where Q is a bounded domain in
R¥, ke (1,2, 3}, with smooth boundary 8%, and 7 is the outerward unit
normal vector on 92. The diffusion coefficients (D;), intrinsic per cap-
ita growth rates (g;) and competition coefficients (b;) in (1.1) were taken
to be constants in [4]. The parameters «; > 0 in the boundary condition
(1.2) were employed to allow for a differential response to the level of hos-
tility of the “matrix” habitat surrounding €2, which was captured by the
parameter 8. The mode! (1.1) and (1.2) was analyzed in [4] to determine if
there were conditions on the parameters D;, a;, b; and o; and the domain
£ under which its predictions regarding the outcome of the competition
could be altered by increasing the level of exterior hostility by increasing
B. Note that 8 was allowed to range from 0 to +o0, with the convention
that B/(o; + B) takes on the value 1, when §=+o00.
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The analysis in [4] proceeded along the following lines. First of all, in
any competition model, coexistence should require that each species per-
sists in the absence of the other. Consequently, it is necessary to begin
with the diffusive logistic problems

%=D,~Au,-+u,-[a,~—-u;] in £ x (0, 00),
at
5 5 (1.3)
1- Vuj -1+ ———uj= , 00),
( Oli+ﬂ> Uu; n+ai+ﬂu, 0 on 002x(0,c0)

i=1,2. The dynamics of (1.3) are well-understood (e.g., see [2]). Namely,
positive solutions to (1.3) converge over time in C!*¥($2) to a unique pos-
itive equilibrium solution, denoted 6p/(¢;+.5), provided that the principal
eigenvalue o; is positive in the problem

DiAz+ajz=0iz in £,
(1.4

N B,
( ai+ﬂ)Vz n+ai+ﬂz——0 on a2

and converge to 0 over time if o; <0. It is a simple matter to calculate that

0’,'=a,'—-D,')\] (Q’Ol'iﬂ>’ (1.5)

where A=2A!(Q, (8/(e; + B))) is the principal eigenvalue in the problem

— Aw=Aw In §,
(1.6)

__# P
(1 a,~+ﬂ>vw n+ai+ﬁw_0 on 392

Consequently, o; >0 in (1.4) is equivalent to

aj 1 B
E>A (Q,a——H—ﬂ). (1.7

Since Al (2, (8/(e + B))) is monotonically increasing in 8, by (1.7) one
may guarantee that (1.3) predicts persistence of each species in the absence

of the other for all B &[0, oo} provided
aj 1
e 2,1 1.8
5> M@ (18)

for i=1,2.
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The globally attracting positive equilibrium solution to (1.3), which
exists for any B assuming (1.8), effectively functions as a (spatially
varying) carrying capacity for the species’ density. It follows as in [8] that
species 1 is predicted by (1.1) and (1.2) to persist if it always increases
its density when it is introduced into the habitat patch  at low densi-
ties while species 2 is present in 2 at its carrying capacity 8g/(«,+p) in the
absence of species 1, and vice versa for species 2. Mathematically, these
requirements are again expressed as having positive principal eigenvalues
for suitable elliptic operators. Specifically, species 1 is expected to persist
if the principal eigenvalue &} is positive in

DlA¢1+<a1-—b19?%ﬁ> ¢1=01¢41 in Q,
2
(1—u]§ﬂ)v¢1-n+&—£—ﬁ¢,=o on 092

and species 2 is expected to persist if the principal eigenvalue &, is positive in

(1.9)

DyAgy + (az - b29__%7!> ¢pr=02¢p in Q,
@y

(1.10)
(1-27) Vo2 -+ =0 on 92
Notice now that for fixed selections of the parameters D;,a;, o and
B.&1 and &, are decreasing in by and b, respectively, and indeed that
there are unique values by = bi(Dy, D3, a1,ay, 01, 02, B) > 0 and by =
bz(Dl, Dy, a1, a2, a1, 032, B) >0 so that 6;=0 when b= b; and &, =0 when
by =bhs. Consequently, the model (1.1) and (1.2) predicts persistence of spe-
cies 1 when by < b; and persistence of species 2 when by <by. If by >
by, &1 <0 and then species 1 tends toward extinction in (1.1) and (1.2) if
the initial configuration of the ecological system is (41, 6p/@r+), Where
u; <« 1, with an analogous result for species 2. Thus, species 1 has a com-
petltlve advantage over species 2 whenever b <b1 but by > by. Likewise,
species 2 has the advantage if b <by but by > by.
For fixed configurations of Dj,a; and «;, by and b, may now be
regarded as functions of B on [0, co]. Theorem 3.1 of [4] guarantees that
b1(B) and by(B) are differentiable in B on [0, 00]. Suppose now that

ay > as. : (1.11)

An easy calculation reveals that
bi(0)==2L > i:b@ (1.12)

az

It follows from (1.11) and (1.12) _E_Lnd the differentiability of b1(B) and
bo(B) that if by =1=by, then b; <b1(B) and by > by(B) for all sufficiently
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small 8. Under the assumptions

a a 1

— D e Q .

D2>Dl>k( D (1.13)
and

ay —az 1

— <A (2 .

Dy =D, <A (2, D, (1.14)

Theorem 6.2 of [4] guarantees that
B1(00) <2 < 2L LBy (00). (1.15)
a ap

Consequently, assuming (1.11), (1.13) and (1.14) it follows from (1.15) and
the continuity of b;(8) and by(B8) that if by =1=b,, then b > b1(B) and
by < by(B) for all sufficiently large 8. So under assumptions (1.11), (1.13)
and (1.14), if by =1="b,, species 1 has the competitive advantage in the
model (1.1) and (1.2) when the level of hostility of the “matrix” habi-
tat surrounding 2 is low, whereas species 2 has the competitive advantage
when the level of hostility of the “matrix” habitat surrounding €2 is high.
Thus there is a reversal of competitive advantage inside the habitat patch
§2 brought about solely by a sufficient increase in the level of degradation
in the “matrix” habitat surrounding €.

Theorem 6.2 of [4] guarantees an ultimate reversal of competitive
advantage in (1.1) and (1.2). However, the result in Theorem 6.2 of [4]
does not rule out the possibility that the competitive advantage in (1.1)
and (1.2) might switch back and forth between species 1 and species 2 a
number of times before ultimately belonging to species 2. This observation
raises a very interesting question, both ecologically and mathematically.
Namely, just how sensitive might the competitive advantage in a model
such as (1.1) and (1.2) be to the level of degradation in the “matrix” habi-
tat surrounding the habitat patch Q7 In particular, can competitive advan-
tage in such models reverse more than once as the level of degradation in
the “matrix” habitat surrounding 2 increases?

It seems reasonable to suppose that if the two competitors are similar
to one another, the sensitivity of the system to the level of degradation in
the surrounding “matrix” should be higher than in a case in which they
are less similar. Consequently, we will look for the phenomenon of mul-
tiple reversals of competitive advantage in a Lotka—Volterra system which
is only a slight perturbation of a situation in which the competitors are
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identical. Specifically we will examine the system

%; =Au-+u[l+eg—u—]
in  x (0, c0),
dv (1.16)

-a—t=Av+v[1—u—v]

(1=5)Vu-n+su=0=(1-5)Vv-n-+sv on 902 x (0, 00),

where s ranges over [0,1]. Notice that when e=0, (1.16) reduces to

a
a—L;:--Au—I-u(l—u—-v)
in § x (0, 00),
]
%:Av—l—v(l—u—v} (1.17)

¢! —-s)Vu~n+su=0=(1\—S)Vv'n+sv on a£2 x (0, co).
If A2, 1) <1, 6, >0 exists for all s€[0,1]. Since

(1-5)V8;-n+s6,=0 on 3%,

it follows that
bi(s)=by(s)=1 (1.18)

in (1.17) for all s €[0,1], and neither species ever holds a competitive
advantage in the sense we have described. Notice also that equilibria to
(1.17) satisfy

Au4u(l—u—v)=0
in ,
Av+v(l—u—v)=0 (1.19)
(A-5)Vu-n+su=0=(—-s)Vv-n+sv on 382.
By adding the Equations in (1.19), we see that w=u+v satisfies
Aw+w(l-w)=0 in Q,
(1-)Vw-n+sw=0 on Q2.

Hence, if u and v are nonnegative, u +v=0;. So by (1.19), » and v each
solves the eigenvalue problem

Az+z(1~8)=0cz in Q,
(1—-5)Vz-n+sz=0 on 32,



Multiple Reversals of Competitive Dominance 979

with o =0. The definition of 6, then guarantees that u =76, and v=(1—
7)8, for some v €[0, 1]. Consequently, for each s €[0, 1], (1.17) has the one
parameter family

{(z6s, (1 —7)85) : 7 €0, 1]} (1.20)

of componentwise-nonnegative equilibria.

The perturbed system (1.16) is completely determined by the choice of
the funciton g. The remainder of this article is devoted to the question of
whether there exist functions g for which (1.16) exhibits mulitple reversals of
competitive advantage as the hostility of the “matrix” habitat surrounding
(which is measured by s) increases. In Section 2, we make a detailed exam-
ination of the dynamics of the perturbed system (1.16) for small positive &
and for s €[0, 1], leading to appropriate conditions on the funciton g and
the carrying capacity densities 6; so that (1.16) does exhibit multiple rever-
sals of competitive advantage between the two competitors as s varies from
0 to 1. In this case, as distinct from the results in [4], the competitive advan-
tage that one species has over the other is necessarily independent of initial
configurations of species densities. In other words, when one of the species
has the advantage, it competitively excludes the other over time. Moreover,
the analysis shows explicitly how, under appropriate conditions on g and
the 8, the regions in (g, s) space in which one species excludes the other
in (1.16) are bordered by values for which (1.16) admits a unique globally
attracting componentwise positive equilibrium. These results require a very
careful unfolding of the sheet of solutions described by (1.20) near appro-
priate values of s. In Section 3, we show how to guarantee the existence of
a suitable perturbation g, and we conclude with a brief discussion of the
ramifications of the results in Section 4.

2. THE DYNAMICS OF THE PERTURBED SYSTEM

Throughout this section, we assume that 1>A!1(, 1) and that g in (1.16)
is Holder continuous on § with exponent & € (0,1) (i.e., g € C*(Q) for
some « € (0,1)). When & #0, (0,6;) remains an equilibrium solution to
(1.16) for any ¢ and for all s €[0,1]. However, the remainder of the
one-parameter family (1.20) of equilibrium solutions to (1.17), namely
{(z8, (1 —1)6,): T €(0, 1]}, are not equilibrium solutions to (1.16). If v=0,
(1.16) reduces to the diffusive logistic problem

9 .
%:Au—f—(l—}—sg-—u)u in €,

(1-5)Vu-n+su=0 on Q.

@0

E rﬂ»
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The dynamics of (2.1) are the same as (1.3); positive solutions to (2.1) con-
verge over time in C!() to a unique globally attracting positive equilib-
rium solution ., provided the principal eigenvalue o is positive in the
eigenvalue problem

Adp+(1+eg)p=0c¢ in Q,

(2.2)
(1-=5)Ve-n+s¢=0 on IQ

and converge over time in C1() to 0 if o <0. Since g € C*(Q), eg >
—|elligllo and we have by an eigenvalue comparison principle that
o = 1-lelllglloo—2'(2,9)

> 1—-lslligloo =2 (2, 1)

>0
provided that |g| is sufficiently small. So in that which follows, we assume
le] to be small enough so that #i;; exists and is the globally attracting
equilibrium for (2.1) for all s€]0, 1].

Our first task is to estimate the values by (e, s) and by (e, s) for which
the principal eigenvalues o1(s, s) and oy(g, s) in the problems

A¢e.s+(1+88"51(5: 8)05) e s =01 (8, S)Pe. 5 in ,

(1=5)V¢es-n+s¢ss =0 on 0%,
A s +(1 ”’EZ(& S)ﬁE.S)v/E,S =02(e, S)llfﬁ,s in ,

1 —'S)V%..v . 77+51//e,x =0 on a2

(2.3)

(2.4)

are both zero. For the moment, regard s €[0, 1] as fixed. It follows as in
[4] that ii. ¢, by (g, 5), ba(e, s) are differentiable in e for || small and that if
¢,y and Y, ¢ are normalized by the requirements

f¢§'sdx=1=f ¥2,dx
Q 9]

so are ¢ ¢ and Y, . Indeed, one may modify the arguments in [4] slightly
so as to have these functions differentiable in ¢ for |¢| small to any desired
order. Consequently, we have the following expansions which are valid for
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le! small:
bi(e,s) = 1+ar1 () +0(e?), (2.5)
P, = |I9s 0 —— 4 £p; (5) +0(e?), (2.6)
fie,s = 05 +eu1(s)+0(s), @.7)
ba(e,5) = 1+era(s) +0(e?), (2.8)
Ves = : ™ +202(s) +0(e2). 2.9)

We wish to determine ri(s) and ry(s). To find r(s), substitute (2.5)
and (2.6) into (2.3). After simplification we obtain that p;(s) satisfies

1(8)0; — g)6 .
Am(S)+(1—9x)PI(S)=W~{ in ,

(I1-5)Vpi(s)-n+spi(s)=0 on 0%.

(2.10)

Multiplying (2.10) by 6;, integrating and employing the Divergence Theo-

rem gives
0=r1(s)/ ngx-—/ g@f‘dx
Q Q

()= / g62dx / / 62dx. @.11)
Q Q

To find ry(s), we need to determine ul(s) in (2.7). Substituting (2.7)
into (2.1) establishes that

so that

Auy(s) + (1 —60)u1(s) =0;11(s) — g6y, in Q

(2.12)
(1 =)Vu(s)-n+sui(s)=0 on Q2.
Next, substituting (2.7)-(2.9) into (2.4) yields
uls bk .
Ap2(8) + (1 —6)pa(s) = nel'ns ||;~ﬁ in @
s 112 s 112 (2.13)

(1=5)Vpa(s) n+sp(s)=0 on 0.
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Multiplying (2.12) by 8,/(ll6s]l2) and (2.13) by 6, and subtracting yields
that

lll(S)> ( ul(s)> rz(s)932+g952 )
;A (s)— +60,(1-6 5)— = in Q
; (” A TN A e TN Y A TN
2.14)
(1-5)V <p2(.5‘)— ul(s)) ‘n-+s (pz(s)- ul(s)) =0 on 822.
165 ll2 65 ll2
Integrating (2.14) and employing the Divergence Theorem establishes that
— [ 887 dx
(8) = —F——. 2.15
ra(s) [ 63dx (2.15)
It follows immediately from (2.11) and (2.15) that
_ 62d
bi(e,s)=1 -}—t&‘—f—@-é—s—-—i +0(e%)
Jo67dx
[ g%d (2.16)
- gos dx
by(e,5)=1—£22=2 " 1 0(e).
2 (8, §) £ fgé?é?dx 4 0(e%)
From (2.16) we have
1<bi(e, ), 1> by(e, ) .17

if [og0?dx>0and 0<e<1 and
1> bi(e, s), 1 <byle, s) (2.18)

if [,g0%2dx <0 and 0 <& « 1. We now have established the following
result.

Theorem 2.1. Consider (1.16) for a fixed s €[0, 1]

@ I fq g02dx >0 and 0<e «1, (2.17) holds and thus species 1 has
a competitive advantage in (1.16) over species 2 in the sense that
species 1 may invade Q@ when species 2’s density is at the carrying
capacity 6 it obtains in the absence of species 1, while species 2
cannot invade 2 when species 1’s density is at the carrying capac-
ity figy it obtains in the absence of species 2.

G If [, g02dx <0 and 0 <e k1, (2.18) holds and thus species 2 has
a competitive advantage in (1.16) over species 1 in the sense that
species 2 may invade 2 when species 1’s density is at the carrying
capacity il ; it obtains in the absence of species 2, while species 1
cannot invade 2 when species 2’s density is at the carrying capac-
ity 05 it obtains in the absence of species 1.
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It is not too difficult to establish that for small enough ¢ that the con-
clusions of Theorem 2.1 may be strengthened to assert that species 1 com-
petitively excludes species 2 in (1.16) when [, g62 dx >0 and that species 2
competitively excludes species 1 in (1.16) when [, g62dx <0. To this end,
we first need the following observation.

Proposition 2.2.  If (u,v) is a componentwise positive equilibrium solu-
tion to (1.16), then [, guv=0.

Proof. Multiply the first equation in (1.16) by v and the second by
u, integrate and employ Green’s second identity.
Now define G:[0,1]— R by

G(s)=f g62 dx.
Q

Theorem 3.1 of [4] tells us that 6 is differentiable in 5. Indeed, the argu-
ment in [4] may be modified to have 6, differentiable in s to any desired
order. Consequently, G is continuously differentiable. We have the follow-
ing result.

Theorem 2.3. Suppose G(s)#0 for s €[a, bl. where 0<a <b< 1. Then

(i) There is an g9 >0 so that if 0<e <&y and s €la, b], (1.16) admits
no componentwise positive equilibrium.

() If GG) >0 for s€la,bl, then if 0 <e<egy and s €[a,b], all
componentwise positive solutions to (1.16) converge over time in
cl() x c1() to (ite,5,0). Consequently, (1.16) predicts that spe-
cies 1 competitively excludes species 2 in Q2 in this case.

(i) If G(s) <0 for sela,b] then if 0 <e<egy and s €la,b), all
componentwise positive solutions to (1.16) converge over time in
CcH) x C1() to (0,6;). Consequently, (1.16) predicts that spe-
cies 2 competitively excludes species 1 in 2 in this case.

Proof. Suppose (i) fails to hold. Then there is a sequence (&, 5y,
Up, Up) SO that

Auy+uy[l +e,8 —up —va]=0
in Q,
Avy +vp[l —uy —v,]=0 (2.19)

(I =s)Vuy - n+spup=0=(~5,)Vvy -7+ 5yvn on 952,

where u, >0 and v, >0 in Q,s5, €{a,b] and g, = 0 as n - co. The
Bolzano-Weierstrass Theorem guarantees that s, — s* for some subse-
quence (which we relabel if need be). The Maximum Principle guarantees
the uniform boundedness of u, and v, for all n. For each n, so long as
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sy # 0, the Laplace operator A plus the relevant boundary condition in
(2.19) is invertible with an inverse which is compact as an operator from
cl(Q) into cY(). If s, =0, the same is true for A —p for any p > 0.
Moreover, these compact inverses are continuous in s. Consequently, there
is a further subsequence (which again we relabel if need be) so that u, —
u*, vy > v* with u* > 0 and v* > 0 satisfying

Au* +u*[l —u* —v*]=0
in £,
AvF 4+ vl —u* —v*]=0

(A =s"Vu* n+s*u* =0=01~s*)Vv* . n+s*v* on 9Q.

Hence it follows from (1.20) that there is a * €[0, 1] so that (u*, v*)=
(T*6y+, (1 — T*)0;+). Proposition 2.2 implies that [, guyv, dx =0 for all n.
Consequently, we have that

r*(l-r*)/ g0% dx =0.
Q

Since fsz g@f, dx =0, it must be the case that t* =0 or t*=1, meaning that
(u*, v*) = (Os+, 0) or (0, f5+). '

So to establish (i), we need to rule out the possibility that u, may
converge to 0 or v, may converge to 0 as n— oco. Suppose, for instance,
that u, — 0. Then

A(I i >+l [0+ £ng — sty — U] =0

[t || oo [tn |l oo

Avg +vp[1 —up —v,]=0

in ,

with

(I=sw)V (—-“” )-n+s,z—“"—-=0=(1—s,,>\7v,,-n+snu,, on 8Q.
etn oo letn oo
Again, there is a subsequence which we relable if need be so that
Un/(lunlloo) = u™, vy — B« with
Au* +u™[l —f]=0 in Q

\

(2.20)
(A —s)Vu** - n+s*u™ =0 on Q.

Since Jlun/(Itnlloo) oo = 1, u** #0. Consequently, it follows from (2.20) that
u** =af, 0 #0. Now for all n, since [q, gunv, dx =0, [ g(un/(lunlloo))vn
dx =0. So we have o [, geg* dx =0, a contradiction. So it is not possi-
ble for u, — 0 as n— oo. A similar argument rules out the possibility of
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v, — 0 as n— oo. Thus (i) is established. Parts (ii) and (iii) of the result
now follow from part (i), Theorem 2.1 and Lemma 3.3 of [9].

As a corollary to Theorem 2.3, we have the following.

Theorem 2.4. Suppose that G changes sign n times on [0,1]. Then
there is an g9 >0 so that if 0 <& <egy, (1.16) exhibits at least n—1 changes
of competitive advantage in which the species holding the competitive advan-
tage excludes the other from S over time.

Clearly G may change sign only when there is an § € (0,1) with
G(5) =0. If we impose the additional condition G'(5)#0, we can show
that the regions in & —s parameter space in which the prediction of (1.16)
is that one species competitively excludes the other ae bordered by regions
in which coexistence is predicted by (1.16). In fact, we have the following
result.

Theorem 2.5. If G()=0 and G'(5)#0 for some 5€(0, 1), then there
are g9 >0 and 89> 0 so that for every ¢ €(0, 9), there are sy(g) <s5*(¢) with
lirr%) 5¢(e) =lim s*(e) =35 so that (1.16) admits a coexistence state Jor sels—

- —>
(ESO, 5+ 60] zf and only if s € (54(g), s*(€)). Moreover, such a coexistence state
is unique for every s € (s*(e), s*(g)) and is globally asymptotically stable.

The proof of Theorem 2.5 amounts to a very careful unfolding of the
equilibria (u, v, s, &) to (1.16) in a neighborhood of
vi={(t0, (1—1)6;5,0):7€l0,1]} 2.21)

and requires several preliminary results. We begin with the following.

(a) 7

®7

(Te,5 0)

('ac,au 0)

(0,65)

(0,6,)

] 0

1 8

wie

0 s,‘('e) ; 1 g*(e)

Figure 1. This provides a schematic illustration of Theorem 2.5. Both (a) and (b) illustrate
the componentwise nonnegative equilibria for (1.16) for some fixed & € (0, 80) where g is as
in Theorem 2.5 and s near §. In (a), a branch of coexistence states bifurcates (in the param-
eters) from the semitrivial solutions (0,6;) at s = s.(¢) and meets the semitrivial solutions
(fie,s,0) at s=s*(2). In (b), the branch of coexistence states meets (fig,s. 0) at s =ws,(g) and
(0, 65) at s==5*(¢). The vertical axis is y =lull2/(lixll2 -+ lvii2).
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Proposition 2.6. Let X =C?t%(Q) x C**%(Q). Then there are an &y >
0 and a neighborhood U of ys in X x (0,1) x (—ep, o) so that for every e €
(0, 89), the set of equilibrium solutions to (1.16) in U consist of the semit-
rival solutions and of those accounted for by the set T N\U, where Tg is a
smooth curve in X x (0,1) given by

Iy={u(, e 1), v(,861)s5(,1)):—g0 <1 < 1489 (2.22)

and u,v,s satisfy

(u(" g, 0)1 U(‘, g, 0)) = (01 9.9(8,0))1 (223)
(M(', &, 1)' U(', £, 1)) = (’z(‘)a,s(e.l% 0)’ (224)
@(,0,7),v(:,0,7),50, 7)) = (265, (1 — )65, 5). (2.25)

Proof. Let X1={(y,2)€X: [q(y —2)05 dx =0}. For any s€[0, 1], any
(1, v) € X may be uniquely expressed as

Os
<3>=<El—r)a¢>+<z)’ (2.26)

where 7 € R and <Z) € X1. Moreover, if (1, v,s) is close to y;, then 7€
(=8,1+8) for some & >0 and small. We shall seek solutions to (1.16)
in the form of (2.26). To this end, let ¥ = C%(2) x C¥(2) x C'+*(3Q) x
ct(3). Then for § € (0, min(§, | —5)), define a map

H: X1 x(~8,8)x (=8, 1+8)xF—85+8)—Y
by
Ay —(y+2)t0s+ (1 —65)y — (y +2)y +egrbs +egy
Az— @+ —-1)0+(1—0)z—(y+2)z

(A—s5)Vy-n-+sy
(1-5)Vz.n+sz

H(y,z,&,1,8)=

Then (u,v,e,s) with (u,v) as in (2.26) solves (1.16) if and only if
H(y,z,&1,8)=0.
It is easy to see that

H(0,0,0,7,5)=0 2.27)

for all Te(—8,1+6) and se(F—6,5+38). As we are looking for solutions
to H(y,z,e,7,8)=0 for (y,2) in X close to (0,0) and 0 <e k1, it is nat-
ural to consider the linear operator L(z,s)=D(y,»H(0,0,0,7,s5) which is
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given by
Ap—(@+¥)ths + (1—-65)e
L(z.s) (co ) _| AV AnU=0+ A=)V | g

¥ (1-5)Vo-n+sp
(A=5)V¥-nt+sy

L(z,s) is a bounded linear operator from X to ¥ which is smooth in the
parameters 7,s. It follows from (2.28) that for any t€(—6,144) and s €

G—8,5+8)
ker L(r,s)=<<?jg )> 2.29)

Notice that X; is the kernel of the bounded linear functional f: X — R

given by
u
f(v)=fg(u-u)9;.dx.

X may be expressed as
for any

for which

1/
f<£>#0

Since for any s€[0,1},8, >0 in € and

f s = | 20,6;dx >0,
—6, o

we have from (2.29) that for any s€(§—4,5+6) and t€(—4,146)
X=kerL(tr,s)® X.

In particular, L(z, s): X1 — Y is injective.
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Now define the operator P(r,s):Y — ker L(z,s) x {0,0}SY by

[fn Bs[(1—1)y—12]dx—f 305 [%{%p— ﬁq}dx :l p
s

[ 62dx
y ,
z
Pl =] _ Ja 0sl(1=0)y—valds— [ 500 [ 423 p- 154 ]ds :
q Jofidx 7
0
0

(2.30)

One may check fairly readily from (2.30) that for any se€(§ —4,5+4) and
T € (=8,1+48) that P2(z,s)= P(r,s) (i.e, P(r,s) is a projection opera-
tor) and that P(z,s)L(z,s)=0, the latter following from an integration by
parts argument. A slightly more involved calculation will show that

R(I — P(7,8))=R(L(z,$))=R((I — P(z,s))L(z,s)) 2.31)

for any s€(5—8,5-+48) and t €(—§,1+6). As a consequence of (2.31), we
have that L(z, s) is a linear homeomorphism from X; onto R(I — P(z,s)),
which is smooth in v and s for t€(—8,1+4) and se (F—48,s—48). It
is an exercise in functional analysis to conclude that L(z, s)~ ! is a linear
homeomorphism from R(I — P(z,s)) into X; which is smooth in v and s
as well.

We may consider the Lyapunov-Schmidt decomposition for H(y, z, &,
t,5)=0 given by

P(t,5)H(y,z,¢,7,5)=0, (2.32a)
(I—P(x,s)H(y, z,871,5)=0. (2.32b)

Since

Dy (I~ P(t,5))H(0,0,0,7,5))
=(I — P(z,s))L(z,s)
=L(t,s)
for all se(F—6,5+6) and 7 € (—48,1+34), it follows from the Implicit

Function Theorem as in [1] that we can solve (2.32b) for (y,2) in
terms of (e, t,s) to find that there are a &; € (0,4) and neighborhood
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V of (0,0) in X; and smooth functions (yj(g, 7, 5), 21(&, 7, §)): (=61, 81) %
(—=61,1+8;)) x § — 61,5 +61) = X1 so that (¥1(0, t,s),21(0, 7,5)) = (0,0)
and (y,z,6,1,5) €V x (=81, 14+681) x (=81, 1+681) x (§— 81,5+ 681) satisfies
H(y,z,&,7,8)=0 if and only if

. 2)=(i(e, 7, 8), 21(e, 7, 5)) (2.33)
and (e, 1,s) satisfies
P(t,s)H( (e, 1,8), 218, 7, 5), 8, 7,8) =0, (2.34)

Here the fact that L(z,s) is a linear homeomorphism from X; onto R(/ —
P(t,5)) plays a crucial role,
From the definition of P(t,s) we have that

Cle, 1,5)0

P(t,s)H(yi (e, t,5), 216, T,8), €, T,8) = —C(E’OT’ $)0s

0

for some real valued function C(e, 7, s). Hence (2.33) and (2.34) are equiv-
alent to

Cle, 7, 5)=0. (2.35)
Since (y1(0, 7, 5), 21 (0, 7, 5)) = (0, 0), it follows from (2.27) that
(0, 7,5)=0 ' (2.36)
for all t €(~6,1+48;) and s € (5§ — 81,5 +381). One may 1'eadily check that
H(0,0,8,0,5)=0 for all € (—8;,8;) and s&(F—6;,5+61). It follows that
(»1(&,0,5),z1(8,0,5)) =(0,0) and hence that
C(e,0,5)=0 2.37)

for all ee€(—48;,8;) and se(§—~681,5+1).
Now consider the semi-trival equilibria (i, s, 0) to (1.16). It must be

the case that when
s
0
is written in the form

fes . To(e, 505 + yo(, &, 5)
0 - (1 - 'C()(E, s))e.i‘ ZO('! £, S)
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as in (2.26),
H(yo(-, €,8),20(, &, 8), € T0(e,8),5)=0
so that y(,e&,$) = y1(, & 10(e, 9), ), 20, &, 5) = z1(, & T0(e,5),5), with

19(0,5) =1 and (y9(-,0,5),20(-,0,5)) =(0,0). Indeed, one may calculate
that

fn ﬁg’se_'y' dx l:!

(e s)w}-[
0= |, 0505 dx

guaranteeing that to(e, s) is smooth in ¢ and s. Consequently, it must be
the case that

Cle, 19(e, 5),8)=0 (2.38)

for all e (—8;1,61) and se(F—48;1,5+81).
Combining (2.36)—(2.38), we have that

Cle, t,8)=¢t[w(e, 8) — 1]Ci (e, T, 5), (2.39)

so that (2.35) is reduced to solving Ci(e, t,s)=0. We see from (2.39) and
the fact that 73(0,s)=1 that

%(O, 7,8)=1(l - 1)C1(0, T, 5). (2.40)

On the other hand, since

s
Cle, 1,8) 69" = P(t,)H(y (e, T, 5), z1(&, T, $), & 1, 5),
0
B
aC — 0
—(0,7,5) OGS = —[P(t,9)H(yi1(g, 7,5),21(8, T, 5), &, T, $)]le=0
oe de
0

o
=Pmmmmﬂann+p“”uu”(f)

921,
e

(2.41)
= P(1,5)H:(0,0,0,1,5)
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780
=P |
0
Os
_t(l=1) [ e0idx [ -6,
- Ja02dx 0
0
So by (2.40) and (2.41), we have that
G(s)
Ci(0, 7,58) = . 2.42
10,7, %) [ 62dx (2.42)

Since C1(0, 7, 5) = G(§)/ [ 67 dx=0 and (3C;/0s)(0, 7,5)=G'(5)/ [ 67
dx # 0, the Implicit Function Theorem guarantees that there is a &, €
(0, 48,) so that all solutions of Ci(g,1,s) =0 in the domain (-4, 8;) X
(=62, 1+682) x (§ — 82,5+ 87) are given by

s=h(e, 1)
for £ € (—87,87) and 7 € (—8,, 1 +487) with
§=h(0, 7).

Thus all solutions of C(e, 7,5)=0 for €€[0,82), 7 € (—682,1+82) and
s€(§—68y,5+387) fall into three families

) TI'i={(s0,5):c€][0,8),5€(F—8,5+82)), corresponding to the
semi-trivial equilibria (0, 8;) of (1.16);
(i) Ty=1{(s, (e, 5),5):e€[0,8),s € (§—d,5+8)}, corresponding
. to the semi-trivial equilibria (i, s, 0), of (1.16);
@) T3={(s, 1, h(e, 1)):e€[0,82), T € (=62, 1 +65)}, accounting for all
coexistence states to (1.16) near y;.

Clearly I''NIMy=¢ and " N3 ={(¢, 0,k 0)) : e €]0,872)}. As for
I'y N T3, observe that (g, 19(e, 8),5) = (6,1, h(e, 1)) if and only if 7 =
19(g, h(e, 1)). Set F(g, 1) =1 —19(¢, h(e, t)). Then

EE(S, =1- ?—Tg(e, hie, 1))- i9—@(8, ).
0T os or

Hence

0Ty

aF
— 0, H=1—--—
ar(o ) as

(0,&)9-’1«(0, D).
ot
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Now Ci(e, 7, h(g, 1)) =0, so that for any fixed ¢
2
at

in 7. In particular,

g(O 1, ~)—I—E—Q—L(O,l,") (O 1)=0.

(g, T, h(e, ))+——-——(e T, hie, r)) (e T)=0

d
Now %(0’ 1,5):Gl(§)//‘9§2dx#0, so that

(o 1)——-3-0—‘(0 1, ')/?ﬂ(o 1,9).
For t* € (—48,, 1+62) and ¢ and s fixed, we have
Ci(e, 7,5)=C(e, T*,S)—{—(‘L‘—‘E*)?-;;l-(e, ™, 8) + (t —t%)%Ce, T, 5).

In particular,

C10, 7, 5) = C1(0, 7%, 5) + (v — r*)aa—il(O, ™, 5)
+(z —t%)2C(0, T, 5).

But now C;(0, 7, s)—G(s)/fS2 6% dx for any T € (— 82,1+82) So (8(31/81)
0, t*, )+ @ —C, 7, 5) =0, 1mp1y1ng 8C/a7(0, t*,5s)=0 for any t* and
s. It follows that (8h/087)(0,1)=0 and thus that (8F/d1)(0,1)=1. Since
FO,D=1~10,h0,1))=1-1(0,5)=1—-1=0, the Implicit Function
Theorem guarantees that

T =1(&, hie, 1))

has a unique solution 7 ==7(¢) for all £€[0, §3) for some &3 <5, with T7(0)=
1. Thus Ty N3 =={(&, T(e), h(s, T(e)) : £ €[00, 83)}.
Now for £ €0, 83) and t € (—83, 1 +63), define

u(-, &, 1) = 170,z +y1(6, TT(e), he, TT(€))), (2.43)
v(, 6, 7) = (1 —TT(E))0ne i) 216, TT(E), h(e, TT(8))),  (2.44)
s(e, 1) = h(e, t1(8)). (2.45)

This construction yields the branch of equilibrium solutions to (1.16) T,
given in (2.22). The preceding discussion shows that I'; and the semi-triv-
ial equilibrium solutions constitute all equilibrium solutions to (1.16) in



Multiple Reversals of Competitive Dominance 993

a neighborhood of y; for ¢ fixed provided e is sufficiently small. More-
over, (2.23)—(2.25) follow from the preceding constructions, completing the
proof of Proposition 2.6.

We now turn to the question of stability of coexistence states to (1.16)
when & >0 is sufficiently small. We have the following proposition.

Proposition 2.7. Suppose that G() =0 and G'(5) #0 for some § €
0,1). Then if U is as in Proposition 2.6, there is an ey >0 such that for
0 <e <&y all coexistence states for (1.16) in U are linearly stable.

Proof. In light of Proposition 2.6, all coexistence states for (1.16)
near y; may be parameterized in terms of ¢ and t and for fixed e are con-
tained in I";. (To ensure that one has componentwise positive equilibrium
solutions to (1.16), one must require that 7 € (0, 1).) It follows from (2.23)
to (2.25) that we have the expansions

u(- e, ) = t[6 +eui () +0(e)], (2.46)
v(, & 1) = (1 — 7)[6 +£v1 (1) +0(e%)], (2.47)
s(e,t) =5+es1(1) +0(e%), (2.48)

where 0(¢2) denotes functions which are bounded by Ce&2, with C indepen-
dent of & for 0 <e« 1 and 7 €[0,1].

Our next step is to be identify u;(r) in (2.46) and vi(r) in (2.47). To
this end we have the following result.

Lemma 2.8. There is a y =y(r) €R so that

ui(r) = ~[A+tB+(1-1)Cl+ (1 —-1)y065,
vi(t) = ~[A+1B —tC]—1Y0;,

where the functions A, B and C are uniquely determined by:

AA+(1-20)A=0 inQ

(1-5)VA-n+5A= Sl‘_(_r;

(2.49)

6; on 982,
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with s1(r) as in (2.48);
AB+(1—-26;)B=g0; in Q

(2.50)
(1-5VB-n+5B=0 on 4%;
AC+ (1 —6;)C=gb; in ©
(1-5)VC-n+5C=0 on 3%, (2.51)

/ CO; dx =0.
Q

Proof of Lemma 2.8. Direct calculation reveals that uy =u;(r) and
vy = () satisfy

Aui+Q—=09)u; +6:[g—tu; — (1 —1)v1]=0 in Q (2.52)

Avi+ Q-850 +05(—tu; — (I —-t)v) =0 in €, (2.53)
with
- _ - - —=51(1)
(1-5Vuy-n+su;=1-5)Vvy - n4svr= T3 f; on 092, (2.54)

1t follows from (2.52) to (2.54) that
Ay —v)+ A =0 (uy—v))+gfh=0 inQ

(2.55)
(1-5V@u—vy)-n+5u—v)=0 on Q.
We have from (2.51) and (2.55) that
A~ +CO)+1 =)y —v+C)=0 in Q
(1—-HVu; —v+C)+35w;—v;+C)=0 on Q.
from which it follows that there is a y € R so that
Uy —vy=—C+yb;. (2.56)

Multiplying (2.52) by 7 and (2.53) by 1 —t and adding the result tells us
that ‘

[A+1=20))(rur+ (1 —7)v)+786;=0 in Q (2.57)
A-HV@u;+0—-t)v) -n+5@u;+ 0 —1)vy) :_—_1_51—(_;7)95 on 382,
It follows from (2.49), (2.50) and (2.57) that

T+l —1)vyy=—A—1B. (2.58)



Multiple Reversals of Competitive Dominance 995

Multiplying (2.56) by 1 —t and adding to (2.58) gives u)(r) as claimed.
Similarly, multiplying (2.56) by —t and adding to (2.58) gives v;(r), com-
pleting the proof of Lemma 2.8.

To study the stability of coexistence states of (1.16), it suffices to con-
sider the linear eigenvalue problem

Ap+(1+eg—2u—vyp+(—u)y=-rp in Q
A+ (-v)p+(1—u—20)Y=—rfy inQ (2.59)
(1=5)Vo-n+sp=0=(1—-5)V¢¥-n+sy¥ on Q.

When &=0, we have (,v) = (v6;, (1 —1)6;) for some 7 €[0, 1] and for
such (u,v) (2.59) has eigenvalue A =0 with corresponding eigenfunction
(8, —0;). Since 6, >0 and (1.16) is monotonic in the skew order (u;, vy) <
(u2,v2) & uy <uy and vy > vy, A=0 is the principal eigenvalue for (2.59).
Moreover, it is algebraically simple and all other eigenvalues A of (2.59)
have positive real parts. The spectral perturbation theory for compact
operators [12] guarantees that for 0 <e <1, if (u,v) is a coexistence state
for (1.16) with (u,v,s,&) near y;, where y; is as in (2.21), then (2.59)
have a unique principal eigenvalue, denoted A(g, ), with corresponding
eigenfunction (p(e, t), ¥ (e, t)) with ¢ >0 in ©Q and ¢ <0 in €, so that
lim,_, ,+ A(g, T) =0. All other eigenvalues of (2.59) have positive real parts
which are uniformly bounded away from zero for all t€[0,1] and 0 <e K
1. Consequently, the coexistence states (u, v) with (u,v,s, &) near y; are
linearly stable provided A(e,7) >0 for t€[0,1] and 0 <e « 1. We now
obtain a formula for A(e, ©).

Lemma 2.9. Suppose that G(§)=0 and G'(5) #0 for some § e (0, 1).
Let (u(-,&, 1), v(, 8 1),5(e, 1)) denote the coexistence states and corre-
sponding boundary parameters on Ty given by Proposition 2.6. Then for
0<t<1 and 0 <e <k, the principal eigenvalue (e, t) satisfies

Jo 865(B—C)dx
[q 67 dx

Ale, t)=2t(1 —r)ez{ + Ci(eq, 'E)Ej}, (2.60)

where Cy(g1, t) € R is uniformly bounded for 0 <t <1 and O <e 1.

Proof of Lemma 2.9. Let u =u(.,e,7),v="v(,& 1) be a coexistence
state associated to s=s(g, t) and ¢ =¢(., &, 1), ¥ =¥ (., &, 1) the eigenfunc-
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tion corresponding to A=A(g, 7). We have

Au+ufl+eg—u—v]=0

in Q
Av+v[l —u—v]=0 (2.61)
(1-)Vu-n+su=0=1-s)Vv-n+sv on 3Q.

If we multiply the top equation in (2.59) by v, integrate over © and
employ the second equation in (2.61) we get

—k/ pvdx =f[vA<p+v(1—u——v)ga]dx+£/ govdx
Q Q Q
—f (uve +uvy)dx ‘ (2.62)
Q

=af g(pvdx—/ uv(p+v)dx.
Q Q

Likewise, if we multiply the second equation in (2.59) by u, integrate over
© and employ the top equation in (2.61) we get

—k/ ul//dx=-/ uv(cp-l—dt)dx——sf guyrdx. (2.63)
o Q Q

Subtracting (2.63) from (2.62) yields

A/(uxp—w,a)dx:a/ g(uy +vp)dx. (2.64)
Q Q
Now we recall that we have expansions (2.46)—(2.48) for u,v and s.
For ¢ and ¥ we have
o =05 +591(7) +0(c?) (2.65)
and
¥ =—0 + 1 (r) +0(s). (2.66)

From (2.46), (2.47), (2.65) and (2.66) we may conclude that [o(uy —
vp)dx #0 for any T€(0,1) and 0 <e k1, so that (2.64) yields

=—-8/ g(ul/f—!-vqo)dx/f(Lup—v(p)dx. (2.67)
Q Q
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Notice that (2.67) implies that (9A/d£)(0,7) =0 for all v € (0, 1).

Consquently, if we differentiate (2.59) with respect to ¢ at £ =0 and
employ the expansions for ¢, ¥, u,v and s we obtain

Apy+ (1 =05)p1 — 85 (@1 + Y1) +65(g —Ttu — (1 —7)v) =0

in Q,
AY1+ (1 =09¥1 — (1 —)0s(p1 + Y1) + 05 (tur + (1 - 1)v1) =0
(1=5)Vor - 1+5p1 =6
on 2.
(=059 = by (2.68)
It follows from (2.68) that @) + 1 satisfies
Alpr+y1)+(1-205)(p1 +¥1)=—gbs In Q
(I1=5)V(p1+ 1) -n+5(@1+¥1)=0 on 982,
so that (2.50) implies that
o1 +Y=-B. (2.69)

Employing (2.69), (2.58), (2.49), (2.50) and (2.51), we obtain that there is
y2=¥2(t) so that

o1+ A+2tB— (2t — 1)C =y6;. (2.70)
Hence we have that
p1=p1(1)=—A—-2tB+ Q21 - 1)C+y26;. 2.71)
Consequently, by (2.69),
Y1=Y1(1)=A+ 2t~ 1)B— 2t —1)C — y265. (2.72)

Proposition 2.2 guarantees that [, guvdx=0. Substituting the expan-
sions (2.46) and (2.47) for u and v, respectively, into [, guvdx and
employing Lemma 2.8 yields

0=1(l—1) U g@?dx-ef g95[2A+21:B+(1——2r)C]dx+O(82)].
2 Q
Since G(5) =0, we have

/ g05[2A +2tB + (1—27)Cldx =0. (2.73)
Q
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We may now establish (2.60). We have A(g, r) given in (2.67). It is
straight-forward to see that

/ (vp —uy)dx= / 62 dx +0(e). (2.74)
Q Q
Substituting for u, v, ¢ and ¥ in [, g(ve+uy)dx, we have
/ glvo+uy)dx
9]
=(1—21)/ g6? dx
Q
4o [ g0 Ou - ru (=D + IO @7)
194
=& / 205[(47 —2)A + (672 —47) B + (—1 +67 — 672)C]+0(¢%)
Q

=2et(l — 1) l:/ g0;(C—B) +0(s)j] .
Q

Substituting (2.74) and (2.75) into (2.67) establishes (2.60) and completes
proof of Lemma 2.9. .

By Lemma 2.9, we will have that A(e, 7)>0 for t€(0,1) and 0<e K1
provided that

/ g0;(B—-C)=>0. (2.76)
Q

This result may be argued along the lines of Lemma 4.15 in [11] and thus

we refer the interested reader to [11]. Now having A(e, 7) > 0 guarantees

the linear stability of (u, v) and completes the proof of Proposition 2.7.
We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. By choosing gy > 0 small enough, we have that
all componentwise nonnegative equilibria to (1.16) in a neighborhood of
s are as described by Proposition 2.6. Hence, for any ¢ € (0, &) it suffices
to consider I'; as given in Proposition 2.6. By (2.48), we have that

s(e, 1) =5 +es51(2) +0(D).
We show that s;(t) is a nonconstant affine function of . To this end, let
Ap(x) =(80;/05)]s=5. Then Ap satisfies
AAg+(1-20:)Ag=0 in Q

-1
1-75

277
(1-5)VAy-n+5Ap=

6 on 9%2.
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It follows from (2.49) and (2.77) that
A=—51(T)Ap. (2.78)

Combining (2.73) and (2.78) we have
2s1(r)/ g@ngdx=/ g0;[2t B 4 (1 —27)Cldx. 2.79)
Q Q

Now G'(5)=2 [ 865 5| _ dx =2 [ g05A0. So [ g05Agdx 50 and (2.79)
implies that

=[O [ fasticds]

2.80
Jo g6:A0dx 2| [o8bA0dx (2.80)
That s1(z) is as indicated follows from (2.76). So, for 0 <e K 1,s(e, ) is
strictly monotonic in 7.

Consequently, we may define

s«(&)= min s(e, 1), s*(e) = max s(g, 1). (2.81)
0<r<1 0=zl

Proposition 2.6 guarantees that (1.16) has a coexistence state for s in
a neighborhood of § if and only if s € (s«(¢), s*(¢)). The monotonicity
of s(s,t) in T guarantees that any such coexistence state, if it exists, is
unique. Propositoin 2.7 guarantees the local stability of the coexistence
state. Since (1.16) is a monotonic system, the coexistence state must in fact
be globally asymptotically stable and the proof of Theorem 2.5 is com-
plete.
As a corollary to Theorem 2.5, we have the following.

Theorem 2.10. Suppose that G(s) changes sign at §j <§ <--- <5, in
(0,1) with G'(5;)#0 for i =1,...,n. Then for any sufficient small ¢ >0,
(1.16) exhibits n — 1 changes of competitive advantage in which the spe-
cies holding the competitive advantage excludes the other from © over
time. Moreover, there is an sg > 0 so that for each i e{1,...,n} and each
e € (0, &), there are s,(¢) and s7(e) with limg_, g5 (€) =5 =limg05/ (¢)
so that (1.16) admits a coexistence state for s near 5; if and only if s lies
between s.;(¢) and s7(e) (See Fig. 1). Moreover, such a coexistence state
to (1.16) is unique and globally asymptotically stable.



1000 Cantrell, Cosner and Lou

3. GUARANTEEING THE EXISTENCE OF SUITABLE
PERTURBATIONS

The results of the preceding section are predicated upon having a per-
turbation (1.16) of (1.17) so that the conditions of Theorem 2.4 or Theo-
rem 2.10 are met. Specifically, the function g which determines (1.16) must
be such that the corresponding function G:[0,1]— R changes sign more
than once (in order for Theorem 2.4 to hold) and with only simple zeros
(in order for the stronger Theorem 2.10 to hold.) In this section, we show
first that such g can be constructed provided for some n > 3,{62,...,62}
is linearly indepedent in L?(£2), where s; €[0, 1] and (without loss of gen-
erality) s; <s3 <--- <s,. We then examine the question of linear indepe-
dence. We show that for any domain €2, 4 such #’s always exist and that
in the special case in which € is an interval, such sets exist for any
n=3.

To these ends, as before, for each s €[0, 1], let 8; denote the unique
positive solution of

—Ay=y(l-y) inQ
(1-5)Vy-n+sy=0 on 9.

The existence of 8, is guaranteed for all s €[0, 1] provided that © is such
that A1(Q, 1) < 1, where A =A!(,1) is the principal eigenvalue in the
problem

—Ap=r¢p in Q
¢=0 on 4%2.

In this case, 6, € C***($2) and the map s — 6, is a differentiable map from
[0,1] into C?+¥(2)[4]. Hence s — 62 can be viewed as a diferentiable map
from [0,1] into L2(£2) and if A is any bounded linear functional on L3 (),
then the map

s— A(Hsz)

is a differentiable map from [0,1] into R.

Suppose now that 0 < sy <5y <---<g, <1 are such that the col-
lection {95.21,,..,93.2”} is linearly independent. Then a basic result of func-
tional analysis (e.g., [14, Lemma 4.14]) tells us that there are bounded lin-
ear functionals {Aq,..., Ay} on L2() so that

Ai(63) =3ij,
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where §;; is the Kronecker delta. The Riesz Representation Theorem
implies that there are elements {k1,..., k) C L*() so that A;:L?(2)—>R
is given by

M= [ s ds.
Q
For i=1,...,n, h; can be approximated in L?(£2) by functions in C*(<).

So, for each i €{l1,...,n}, choose a sequence {ﬁ;k},‘?_‘;l of functions in
C%(§) so that |lhi — hill — 0 as k — co. Let 0 <e « 1 be given.

Since
U hix6? dx——/ hi62 dx
Q J o

for all i, je(l,...,n}, ke &, it follows that for each i €{1,...,n} we may
choose a k(i) so that

< Wik —hill2 163112

02 _E
/Qh,k(,)ﬁsjdx>1 -

\/ ,k(,)9 dx
if i .

Now define a map V: R* — C%(Q) by

ifi=j and

<.._

n
V(Cl,---,Cn):ZCiiiik(i)-
Then if ¢) =(—1)'*!, we get that

/V(C?,... )92 dx—Z( 1)'+1f ,k(,)G dx>1~—¢
Q

i=1

if j is odd, and
<=1+

if j is even. Consequently, if we define G: R" x [0, 1]— R by

G(cl,...,cn,s)=/ Vicl,...,cn)02dx,
Q
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then G(c?,...,c),s) changes sign at least n—1 times on [0,1]. There will
be a §>0 so that if |(c1,...,cx) — (), ..., DI <8,

Gty vvvCny8j)>1-2¢,
when j is odd and
Gley, ..oy on, 8j) <~1+42e,

when j is even. The Transversality Theorem [l10, p. 68] guarantees
for some (Z1,...,En) with |(@1,...,8n) = (), ..., D) <8, G-, En,5)
has only simple zeros. Theorem 2.4 holds for any (c,...,cn) with
ety -vvven) = (9, ..., c0) < & and the stronger Theorem 2.10 holds for
(€1,....Cy) or any other (cy,...,c) Wwith [(c1,...,cn)—(c?,...,cg)l <48
such that G(ci,...,cq,s) has only simple zeros on [0,1].

The preceding discussion shows that there is a perturbation of (1.17)
so that the perturbed system (1.16) exhibits at least n reversals of com-
petitive advantage between the two species as matrix hostility increases as
described in Theorems 2.4 and 2.10 so long as there are n+ 1 values of
5,0 50 <5y<--<5, €1 s0 that {630,931, '-~v9s2,,} are linearly indepen-
dent. Consequently we are led to the question of linear independence of
such sets. We have the following result.

Theovem 3.1. (i) For any domain Q satisfying the hypotheses of Sec-
tion 1, there are 51 and s; with 0 <s; <s3 <1 so that {1,9%,9@,6%} is lin-
early independent. Consequently, there are always perturbations of (1.17) so
that the perturbed system (1.16) predicts at least 3 reversals of competitive
advantage as matrix hostility increases as described in Theorems 2.4 and
2.10.

(ii) If Q=[a,b] and n is any positive integer, there are 59,51, ...,y With
0<sg<si < <8, <1 s0 that {9.;20,93},...,9_51} is linearly independent.
Consequently, in one space dimension there can be an arbitrary number of
reversals of competitive advantage as matrix hostility increases as described

in Theorems 2.4 and 2.10.

Proof. (i) It is not difficult to see that {95,63,912} = {1,6‘2,612} is
linearly indepedent for any s € (0, 1). For, if

co +cs(932 + c1912 =0
in ©, then

2c405 Os)x; + 216161 Vi = 0
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in Qfori=1,..., k. It follows that
Csesvey . 77:0

on 9$2. Hence, c¢;(s/(1 ——s))9s2=0 on 0%, so that ¢; =0, Since 612 is non-
constant,

cp +C19,2 =0
in  implies that ¢g=0=c¢y.
So now consider {1, 63‘1 , GSZZ, 612}, where 0 < 51 < 52 <1, and sup-
pose
o+ Cyy 631 +63293'Z +¢10?=0
in . Then
CS;BS] (9.1‘1)/\',' +C.5‘29S2 (Gsz)x; +C191 (HI)Xf =0

in Q fori=1,...,n It follows that on Q2

Csy sy 63] —C0

51 52 2
Csy ( I-x ) sy (l——sz) 9.72 0

Since

Csy Csy

=CnCoy |\ 7 — ’
es, <_Sl_) Coy (__{z__) -5 11—

1—5 1—s3

if ¢y #0 and ¢;, #0, 93] and Gszz are constant on 9. Consequently, 6,
and V@, -n and 6;, and V@, -n are constant on 9. It follows from
[15] that © is a ball. Consequently, unless € is a ball, at least one of
cs, and c;, must be zero. If such is the case, the linear independence of
{1,9}1,632,9%} follows from the linear independence of {1,93,912} for any
se(0,1).

So long as €2 is not a ball, {1,95,0@,912} is linearly independent for
any choice of s1, 52 € (0, 1) with s; <s,. In the case when Q is a ball, our
result is not quite as general. Namely, we can show that for any s, € (0, 1)

there is an § > s; so that {1,93},932,612} is linearly independent for sy >
5.
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Without loss of generality, assume that € is the unit ball in RY, N >
1. Since for any s €[0, 1],
AG+0-62=0 inQ,
(1-5)VE-n+s0=0 on Q2
can have at most one positive solution, it follows that for all s €0, 1], 6,
satisfies

N-—1
O5)rr +——(0)r +0,=67=0 on (0, 1),

@) (0)=0, (3'1)
(1-5)(O5)r (1) +565(1) =0.

Now suppose that
co +C~“16521 +Cs29322 +c1612=0 (3.2)
in (0,1). Differentiation with respect to r yields
Cyy B (Os) )r + 5,05, (Os;)r + €161 (61)r =0 (3.3)
in (0,1), so that

Cyy (esl )% +cs 9.3'1 (gsl Yer + Csy (Gsz),z- + Cszesz (esz)rr ~+¢1(01 );2~
+¢101(01)rr =0 - (3.4
in (0,1). We obtain from (3.1) that
N-—-1

r

G5y (B5,)2 + ¢5, 5, [es% = oy, »] + 5y (05,)?

N-1
+Cs, 05, [932 — 0y, — -r—(esz),} +c1(61)2 (3.5)

+e1y [912 —61— NT_I(&),}
=0
in (0,1). Using (3.2) and (3.3) we may reduce (3.5) to
Csy (G5)? + 5,03 + 3y (05)2 + C5,03 + €1 (0)2 + €16 +c0=0.  (3.6)
Differentiating (3.6) yields

203'1 (gsl I (exl Yrr + 3Cy; Hsz] (9.3'1 Yr+ 2Cs2 (Gsz)r(exz)rr + 3Cs29s22 (Q\'z)l‘
+2¢1(81)r (01)rr +3¢107(01)r =0 (3.7
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in (0,1). Substituting via (3.1) yields

N -
25 (Os))r [-— W-D

((')vl)r 9v1+9521]+30v1 ( )r

N-1)

+2¢5, (05, [ ———(0,)r — b, +9‘32} +3c,02(02)r

+2¢1(61)- [“ (N’—- )(91)r — 0 +912] +3C1912(01)r
=0 (3.8

in (0,1). Employing (3.3) we may rewrite (3.8) as

N-1)

[0 02+ ey 022+ 107 ]

45682 6n)r + e 00 + 167601, |
=0

(3.9
in (0,1). Using (3.4), we may express (3.9) as
N—
( D [Cnesl (Bs))rr + C5505, (B5y)rr + 101 (el)rr]
+5 [Csl 95] (9x1 ) +Cs2 (932)1' +0191 (el)r]
=0 (3.10)

in (0,1). Now using (3.1) to substitute for (6s,)~ and (fy,), in (3.10), we
obtain

2(N-1) [ (N-1)

- C

+2(1\71- 1)
2(N 1)

9.)1 (9.51 r— Célesl + 05193 :l

(N—-1)
|:_Csz 9s2 (Qsz)r Csz + Cs293 :I

€161 0)rr + 5[ 05,02 G0y )r + 03, Or)r + 16301, |
=) (3.11)

in (0,1). Now set r=1 in (3.3) and (3.11) to get

cTll (1)-+—c¢21 (1) 0 (3.12)
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and

¢ 65 (1) [2(N— D251 (N = 1) 8, (DR — 1) — — )]
I—s 1—s1

5 L
=" (3.13)

The equations (3.12) and (3.13) can be written as

¢s, 02, (1) 0 ‘
A = : (3.14)
¢s,02 (1) 0

52

where
8 52 ]
1 -4 v 1—s5;
A=| 2y =122 N =1y 2(N—122 (N —1)
1—s51 1—8
+es,<1><2(N—1>—5<1—-Si—>> 05, (DN — 1) = 5(—2—))
L -5 1—s5""
(3.15)
From (3.15) it is straightforward to calculate that
Al =20 = 1)(5 2 _3(1 -85, (1)
e
+2<N—~1><1—f_‘—“><9s2<1>—1> (3.16)
S1 S7
G50 (D=0 (1),

The first and third terms in the expression for |A| increase in s on the
interval [s, 1], while the second decreases. Consequently, it is not immedi-
ate that |A| increases as so increases on [s1, 1]. (Since |A|=0 when s =4,
knowing that |A| increases with s, on [0,1] would have guaranteed that
|A]#0 for all s, € (51, 1).) However, since limg, »1(s2/(1 —53)) =400 and
limy, »1 05, (1) =0, it follows from (3.16) that:

lim |A|= . 3.17
Jim 14] = +o0 (3.17)

Consequently, there is §; > s1 so that |A| >0 for 55 2 §. From (3.14) we
obtain that if 55 > §,

e, 02 (1) =0=cg,02 (1) (3.18)
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and hence
Csl :O:CSZ' (3.19)

It now follows that {1,95.21,9.?2,912} is lineraly independent so long as
5y 2 5.

(ii) In the case of one space dimension, we consider the equation
0" +6(1-6)=0. (3.20)

Any solution to (3.20) is analytic on its domain of definition. Ludwig,
Aronson and Weinberger [13] made a systematic analysis of solutions
to (3.20), exploiting the fact that (3.20) may be recast in the system
form

' =—p
o' =6(1—8)

so that phase plane analysis may be brought to bear on the problem.
From these results, one may conclude that for any 6y € (0, 1), the solution
6(x, 6p) to (3.20) satisfying

6(0) =09

(3.21)
6'(0)=0
exists on (—oco,00), is positive and symmetric on (—£(6), £(6g)) with
A(£(6p), 60) =0 and 0’ (x, 8y) <0 on (0, £(F)), and is periodic with minimal
period P(6p). Here £(6p) and P(6y) are continuous increasing functions of
60 € (0, 1), with

lim £(6g) =m/2, lim £(Ag) = +o0, (3.22)
G0 ’ Gy~ 1

lim P(6y) =2, lim P(6p) = +o0. (3.23)
90-—%0 90—-)1

Notice, that due to the periodicity of 8(x, 6y), 8'(kP(6p), ) =0 for any
positive integer k.

Let us now construct a sequence {61,....6,) of solutions to (3.20)
as follows. First, choose 8)(x) =0(x,06p1), where 6p; € (0,1) is such that
((b—a)/2) <£(fg1). Then, for i=2,...,n, take 8;(x)=60(x, 6g;), where 6y; €
(6pi—1, 1) is such that

£(B0i) > P (6oi-1) (3.24)
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and
P (Bo;) =ki P(6i-1) (3.25)

for some positive integer k;. Observe that (3.25) implies that if | <i<j <
n.

P(Oyj)=k; ki1 P(Bgi)- (3.26)
Suppose now that
n
> cifx)=0 on (-L,L), (3.27)
i=1

where L= (b—a)/2. Since each §; is analytic on (—o0, 00), 50 is $) Cjéj?

(x). Consequently, (3.27) implies
n
ch-é}?‘(x)zO on (—o00, ),
j=l1
so that
n - .
Zc,-@,-(x)@}(x):O on (—o0, 00). (3.28)

j=1

Since 8'(kP(8g), 6p) =0 for all 8y € (0, 1) and all positive integers k, it fol-
lows from (3.26) that the value of the left hand side of (3.28) at x, =
P(B0n-1) is

cn@ (P (Oon-1), 9011)91(1)(6011_1)1 Gon)- (3.29)

Since P(8p,—1) < £(Bon) by (3.24), (3.28) and (3.29) imply that ¢, =0.
So

on (—o0, 00). Repeating the argument, we may conclude that {512, ooy 67,%}
is a linearly independent set on [—L, L].

Since L <£(f;) for j=1,...,n, we have that §;(L)>0 and é}(L)<o.
Consequently, there is an 5; € (0, 1) so that

5j=0

-~ Sj
VOt
at +L. Consequently, {f},...,0,}=1{6s,,05,...,05,} and we have produced

the desired linearly independent set {931, cees 93;}}.
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4. BIOLOGICAL RAMIFICATIONS

It was shown in [4] that increasing the hostility of the “matrix” hab-
itat surrounding a focal patch of habitat (such as a nature preserve)
could prompt a reversal of dominance between two species competing
inside the focal patch. The current results build upon the observations
in [4]. Indeed, the current results show that it is conceivable that the
dynamics of two-species competition within the focal patch are very sen-
sitive to the degree of hostility in the “matrix” environment, with mul-
tiple reversals of competitive exclusion as the parameter measuring the
level of exterior hostility increases, punctuated by narrow opportunities for
coexistence.

The current results are based upon a slight perturbation in the local
per capita growth rate of one of two previously identical competitors.
The results of [4] do not apply to the competitive system analyzed here.
Indeed, in [4], when there was a reversal of competitive advantage between
the two competitors, one species held the advantage in the focal habi-
tat patch when the level of hostility in the surrounding “matrix” hab-
itat was low, while the other species held the advantage in the focal
patch when the hostility in the surrounding “matrix” habitat was high. In
the current situation, whether there is an ultimate “reversal of fortune”
depends upon how the local per capita growth rate of one of the species
is perturbed. Moreover, not all perturbations of (1.17) of the form (1.16)
exhibit such shifts in their predictions as the hostility of the “matrix” hab-
itat surrounding the focal habitat patch increases. For instance, if g in
(1.16) is a constant or more generally, simply stays of one sign through-
out the habitat patch, one species is necessarily dominant and excludes
the other in the focal habitat patch whatever the level of hostility in
the surrounding “matrix” habitat. Indeed, in the example we have con-
sidered, spatial heterogeneity inside the focal habitat patch in the form
of a perturbation g which changes sign in the focal habitat patch is a
prerequisite for such sensitivity of the model predictions to the level of
exterior hostility. The changes in the predictions of (1.16) are due to
increasing the parameters, but will not occur if g fails to change sign in
Q.
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